Çarpma işlemi çarpanlardan ve çarpımdan oluşur. Birbiriyle çarpılan sayılara ''çarpan'', elde edilen sonuca ise ''çarpım'' denir. Toplama işleminde olduğu gibi çarpma işleminde de sayıların yer değiştirmesi sonucu etkilemez. Örneğin: (3 × 7 = 21) ve (7× 3 = 21).
Doğal Sayılarla Çarpma İşlemi
1- Çarpma işleminde sayılar çarpılarak toplanır. Bazı problemlerde sonuca daha kısa sürede ulaşmak için toplama işlemi yerine çarpma işlemi yapılabilir.
Örnekler:
a- Samet, Ali ve Koray'ın toplamda 5'er tane kalemi vardır. Bu üç arkadaşın toplam kalem sayısı kaçtır.
a) 13 b) 15 c) 17 d) 20
Açıklamalı Çözüm: Sonuca ulaşmak için toplama ve çarpma işlemlerinden biri yapılabilir.
- Yöntem: 5 + 5 + 5 + = 15
- Yöntem: 5 × 3 = 15
Doğru cevap ''b'' şıkkıdır.
b- Selma ve Serpil'in kitaplığında 100'er tane kitap vardır. Selma ile Serpil kitaplıklarını birleştirirse kitap sayıları kaç olur?
a) 100 b) 150 c) 200 d) 250
Açıklamalı Çözüm: Bu problemde de ilk örnekteki gibi toplama ve çarpma işlemlerinden birini yaparak sonuca ulaşabiliriz.
- Yöntem: 100 + 100 = 200
- Yöntem: 2 × 100 = 200
Doğru cevap ''c'' şıkkıdır.
2- Çarpma işleminde ''×'' yerine ''.'' işareti de kullanılabilir.
Örnekler:
2 × 2 = 4 yerine 2 . 2 = 4
3 × 4 = 12 yerine 3 . 4 = 12
7 × 7 = 49 yerine 7 . 7 = 49
3- ''0'' sayma sayısı değil doğal sayıdır. Toplama işleminde etkisiz eleman olan ''0'', çarpma işleminde ''yutan eleman'' olur.
3 × 0 = 0
12 × 0 = 0
123 × 0 = 0
Not: İkiden fazla çarpana sahip çarpma işlemlerinde çarpanlardan biri ''0'' ise sonuç yine ''0'' olur.
Örnekler:
3 × 21 × 0 = 0
7 × 0 × 14 = 0
111 × 110 × 0 = 0
4- Çarpma işleminde çarpanların yerinin değiştirilmesi sonucu etkilemez.
Örnekler:
4 × 1 = 4 ya da 1 × 4 = 4
5 × 4 = 20 ya da 4 × 5 = 20
7 × 3 = 21 ya da 3 × 7 = 21
6 × 9 = 54 ya da 9 × 6 = 54
Not: 3 çarpandan oluşan çarpma işlemlerinde de çarpanların yeri sonucu etkilemez.
Örnekler:
4 × 3 × 6 =
Bu işlemde önce 4 ile 3 çarpılır.
4 × 3 = 12
12 × 6 = 72
Çarpanların yeri değişseydi sonuç yine aynı çıkacaktı..
3 × 6 × 4 =
3 × 6 = 18
18 × 4 = 72
5- Çarpım işleminde çarpanlardan biri 10 ise diğer çarpanın sonuna ''0'' eklenerek sonuca hızlı bir şekilde ulaşılabilir.
Örnekler:
2 × 10 = 20
6 × 10 = 60
11 × 10 = 110
Not: Çarpanlardan biri 100 bu sefer diğer çarpanın sonuna iki sıfır eklenir.
1 × 100 = 100
4 × 100 = 400
12 × 100 = 1200
23 × 100 = 2300
Not: Çarpanlardan biri 1000 ise diğer çarpanın sonuna üç sıfır (000) eklenir.
5 × 1000 = 5000
13 × 1000 = 13000
17 × 1000 = 17000